
Wei Fang , Zhenhao Zhu , Shuwei Zhu , Jun Sun ,
and Xiaojun Wu
Jiangnan University, CHINA

Zhichao Lu
Sun Yat-sen University, CHINA

Research
Frontier

LoNAS: Low-Cost Neural Architecture Search Using
a Three-Stage Evolutionary Algorithm

Abstract

Neural architecture search
(NAS) has been widely studied
to design high-performance

network architectures automatically.
However, existing approaches require
more search time and substantial resource
consumption due to their intensive archi-
tecture evaluations. Moreover, recently
developed NAS algorithms are noncom-
petitive when combining multiple com-
peting and conflicting objectives, e.g.,
the test accuracy and the number of
parameters. In this paper, a low-cost
NAS (LoNAS) method is proposed to
address these problems. First, a variable-
architecture encoding strategy based on a
novel Reg Block is designed to construct
high accuracy network architectures with
few parameters. Second, a training-free
proxy based on the neural tangent kernel
(NTK) is proposed to accelerate the
search process efficiently. Finally, a three-
stage evolutionary algorithm (EA) based
on multiple-criteria environmental selec-
tion and a set of block-based mutation
operators are designed to balance explo-
ration and exploitation better. The
experimental results show that LoNAS
finds network architectures with com-
petitive performance compared to the
state-of-the-art architectures in test accu-
racy and the number of parameters.
Moreover, LoNAS uses less search time
and fewer computational resources, con-
suming only 0.02 GPU Days with one

GPU on CIFAR-10 and CIFAR-100.
Furthermore, the architectures found by
LoNAS on CIFAR-10 and CIFAR-100
exhibit good transferability to ImageNet-
16-120, with the test accuracy surpassing
that of the state-of-the-art network
architectures.

I. Introduction
Deep learning has made substantial prog-
ress in various computer vision tasks.
Manually-designed network architec-
tures, such as VGGNet [1], ResNet [2],
Inception [3], and DenseNet [4], are
some of the essential driving forces in
developing this research field. While
manually-designed network architec-
tures can achieve outstanding classifica-
tion performance, the design process
requires professional domain knowledge,
which is possessed by only a few experts.
Moreover, manually designed methods
consume considerable time and compu-
tational resources due to the need for
repeated experiments.

Numerous studies on neural architec-
ture search (NAS) have recently been per-
formed to design neural networks
automatically. NAS algorithms allow
tuning network architecture skills to be
transparent for users who need to be
more familiar with domain knowledge.
The required human efforts and costs can
be reduced by automating NAS algo-
rithms. NAS can be divided into two cat-
egories, based on whether extra manual
fine-tuning is required or not. The first
category is semiautomatic NAS algo-
rithms, which needs to be combined
with manual fine-tuning. For example,
EAS [5] is based on a good network to
implement search. The base network
needs to be designed manually based on
expertise. Smash [6] needs to manually
train a SuperNet, and then the search
process can be executed in the SuperNet.
The second category is automatic NAS
algorithms, which can be used without
manual fine-tuning, such as [7], [8], [9].
The network architectures found by
NAS algorithms outperform those by
manually-designed algorithms and have

�SHUTTERSTOCK.COM/W001X

Digital Object Identifier 10.1109/MCI.2023.3245799
Date of current version: 6 April 2023

Corresponding author: Wei Fang (e-mail: fangwei@-
jiangnan.edu.cn).

78 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023 1556-603X � 2023 IEEE

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0750-4749
https://orcid.org/0000-0003-0750-4749
https://orcid.org/0000-0003-0750-4749
https://orcid.org/0000-0003-0750-4749
https://orcid.org/0000-0003-0750-4749
https://orcid.org/0000-0002-7203-7078
https://orcid.org/0000-0002-7203-7078
https://orcid.org/0000-0002-7203-7078
https://orcid.org/0000-0002-7203-7078
https://orcid.org/0000-0002-7203-7078
https://orcid.org/0000-0001-8402-8446
https://orcid.org/0000-0001-8402-8446
https://orcid.org/0000-0001-8402-8446
https://orcid.org/0000-0001-8402-8446
https://orcid.org/0000-0001-8402-8446
https://orcid.org/0000-0002-9824-4294
https://orcid.org/0000-0002-9824-4294
https://orcid.org/0000-0002-9824-4294
https://orcid.org/0000-0002-9824-4294
https://orcid.org/0000-0002-9824-4294
https://orcid.org/0000-0002-0310-5778
https://orcid.org/0000-0002-0310-5778
https://orcid.org/0000-0002-0310-5778
https://orcid.org/0000-0002-0310-5778
https://orcid.org/0000-0002-0310-5778
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573

been applied in many fields [10], [11],
[12]. However, the search time and
computational resource costs of NAS
algorithms are usually high. Most existing
NAS algorithms rely on validation data-
sets to optimize network architectures,
requiring considerable time and intensive
computational resources; for example,
NASNet [13] uses 500 GPUs across four
days.

The architecture search problem is
usually framed as a single-objective opti-
mization problem that cannot simulta-
neously consider multiple objectives [9],
[13], [14]. Most real-world deployments
need high classification performance and
low computational resource usage (e.g.,
model size and computational complex-
ity). Several manually-designed network
architectures, such as MobileNet [15] and
MobileNetV2 [16], have been designed to
reduce computational costs while attaining
high classification performance. Some
recent NAS algorithms based on multiob-
jective optimization have been proposed
to develop network architectures that are
easy to calculate and deploy. In [17],
NSGA-Net considered the trade-off
between test accuracy and computational
complexity. In [18], the classification per-
formance and the number of parameters
were combined as objectives. How-
ever, [17], [18] still require numerous
computational resources and long search
time. In this paper, a low-cost NAS
(LoNAS) method based on a three-stage
evolutionary algorithm (EA) [19] is pro-
posed. This approach significantly reduces
search time and computational resource
consumption. Moreover, the classification
performance and the number of parame-
ters can be effectively balanced in LoNAS.
The main contributions of the proposed
algorithm are summarized as follows.
1) A novel network block called the Reg

Block is proposed in LoNAS. TheReg
Block includes the group convolution
and SENet module, reducing the
number of parameters and improving
the network’s classification perfor-
mance. A variable-architecture encod-
ing strategy is designed based on the
Reg Block to encode the network
architecture. By simultaneously consid-
ering variable groups, group widths,

SENet modules, network lengths, and
pooling layer strides, an expanded
search space can be constructed. Then,
more network architectures with good
performance can be found in the
expanded search space.

2) A training-free proxy based on the
neural tangent kernel (NTK) is
designed to evaluate the performance
of individuals in the population. The
NTK can effectively characterize the
trainability of a network architecture
since the condition number of the
NTK (KN) is negatively correlated
with the test accuracy. As KN can be
computedwithout training, the search
time and computational resources can
be significantly reduced.

3) A three-stage EA based on a multi-
ple-criteria environmental selection
strategy is proposed to effectively
balance exploration and exploita-
tion. The environmental selection
process criteria are based on the KN

and individual lifespans. The lifespan
is a property associated with each
individual that indicates the number
of evolution generations an individ-
ual goes through. In the first and
third stages, KN is used as the crite-
rion for eliminating individuals. In
the second stage, individuals are
selected according to their lifespans.
Furthermore, a set of Reg Block
mutation operators is designed to
evolve the population through all
three stages.

II. Related Works
Manually designing high-performance
network architectures is highly challe-
nging, requiring considerable domain
knowledge and consuming substantial
time and resources. Compared with the
traditional manually-designed approach,
NAS algorithms can automatically design
diverse and high-performance archi-
tectures without professional domain
knowledge.

Regarding the development of NAS
algorithms, most works have focused
only on improving the classification per-
formance to outperform manually-
designed algorithms. For example, the
Genetic CNN [20] achieves a 27.87%

top-1 recognition error rate on the
ILSVRC2012 dataset [21], which is bet-
ter than the error rates of most manu-
ally-designed network architectures [1],
[3], [22]. However, the Genetic CNN
also has the most parameters, reaching
156M parameters. Large-scale Evolu-
tion [14] achieves good classification
accuracy on the CIFAR-100 dataset but
requires 40.4M parameters, which is
more than those of other network
architectures. In addition, while AS-
NAS [23] outperforms most NAS
algorithms in terms of classification per-
formance, AS-NAS requires a substantial
number of parameters. The network
architectures obtained by the above
algorithms achieve good performance in
classification tasks. However, these net-
works typically involve a large number
of parameters, which makes these net-
work architectures difficult to calculate
and deploy.

In recent years, some NAS algo-
rithms have focused on multiobjective
NAS to construct effective network
architectures for real-world applications
requiring small size and high accuracy.
Multiobjective NAS algorithms aim to
optimize their accuracy and consider
their resource consumption levels. One
kind of multiobjective NAS algorithm,
such as ProxylessNAS [24] and FBNet
[25], rely on a scalarized objective.
This kind of algorithm simultaneously
encourages good classification perfor-
mance while penalizing other objectives.
Gradient-based approaches construct a
regularization loss to control the trade-
off between accuracy and latency. The
algorithms in this category need to
define preference weight values accord-
ing to the priority levels of different
objectives before searching; this requires
a considerable number of trials, consum-
ing substantial time and computational
resources. Another category of algo-
rithms includes heuristic algorithms
based on multiobjective optimization,
such as NSGA-Net [17], MSuNAS [26],
and LEMONADE [18]. The algorithms
in this category seek high-performance
network architectures by simultaneously
moving objectives to approximate the
Pareto frontier. However, they still

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 79

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

require considerable time and computa-
tional resources. The high demands rise
due to the training and validation of
many network architectures, which are
the main computational bottlenecks
regarding NAS algorithm development.

NAS algorithms developed to accel-
erate automated discovery, such as
parameter-sharing-based algorithms [27],
[28], [29] and single-path sampling-
based algorithms [6], [30], have recently
attracted much attention. A one-shot
supernetwork was constructed first. The
weights of the subnetworks found dur-
ing the search were all inherited from
the supernetwork, enabling the subnet-
works to obtain their weights without
training. However, the supernetwork
training process requires considerable
time, and supernetwork optimization is
difficult. The algorithms that rely on
supernetworks to completely replace the
actual subnetwork weight optimizations
are unreliable. Several studies like [31],
[32] have proven that the correlation
between subnetwork performance
obtained by the above algorithms and
the test accuracy obtained by gradient
descent calculation are both weak. In
addition, some algorithms use surrogate
models to predict the network architec-
ture accuracies rather than directly train-
ing network architectures to reduce
computational consumption; examples
include PNAS [33], OnceForAll [34],
and SemiNAS [35]. The accuracy of the
network architecture is predicted by
constructing a predictor that can achieve
a more accurate network architecture
performance evaluation. However, the
rank order between the true and pre-
dicted accuracy is low. Training surro-
gate models also requires numerous data
samples. The 2k�50k network architec-
tures need to be collected as the training
data to train the predictors, which means
that the cost of well-trained predictors is
exceptionally high.

Instead of evaluating network archi-
tecture performance through training,
NAS algorithms that do not involve
training have been proposed. Several
training-free metrics are correlated with
the network test accuracy, and these met-
rics can be directly employed as proxies

for training-based metrics in optimization
problems. These training-free metrics are
built differently for various NAS meth-
ods. Mellor et al. [36] recently studied
the overlap between the data point acti-
vations in untrained network architec-
tures. They proposed a Jacobian based on
input and output data as a training-free
metric. However, the principle of this
measure has not been explicitly proven or
explained. TE-NAS [37] leverages the
NTK proposed by Jacot [38] and
Hanin [39] tomeasure the network archi-
tecture trainability. In TE-NAS, a strong
correlation between the NTK condition
number and the network architecture test
accuracy was found, displaying good gen-
eralization in different search spaces.

In general, NAS algorithms can be
roughly divided into reinforcement
learning (RL) approaches [28], [40],
[41] and EA-based approaches [42],
[43], [44]. Real et al. [7] provided a
large-scale comparison between EA-
based and RL-based algorithms, prov-
ing that EA-based methods converge
faster than RL-based approaches in the
same search space. Moreover, the
experimental results in [45] showed that
EA-based designs often require fewer
computational resources than RL-based
designs. EA-based methods considers
constructing the network architecture

as a combinatorial optimization prob-
lem through EA, with individuals in the
population representing network archi-
tectures. During evolution, the network
architectures pass through crossover and
mutation operators, and the individuals
with the best fitness are selected as the
optimal solution at the end of the
evolution.

III.Methods
The goal of LoNAS is to search for
highly accurate neural network archi-
tectures with few parameters, using little
search time and computational resour-
ces. An overview of the LoNAS algo-
rithm is presented first in this section.
Then, the details of LoNAS are intro-
duced, including the Reg Block design,
an expanded search space based on a
variable-architecture encoding strategy,
a fitness evaluation of individuals based
on a training-free proxy (i.e., the NTK
strategy), a three-stage EA based on
multiple-criteria environmental selec-
tion, and a set of mutation operators for
Reg Block.

A. Algorithm Overview
An overview of the proposed LoNAS
approach is summarized in Algorithm 1.
LoNAS starts with a population initial-
ized with random individuals (Line 1).

Algorithm 1. Overview of LoNAS

Input: Reg Block parameters, the population size N, the maximum number of evolution
roundsMax gen, the number of offspring t, and the two separation points in the
three-stage evolution process (G1 and G2).

Output: The best discovered architecture.
1: P Initialize a population with a size of N by using the encoding strategy;
2: Evaluate the fitness of the individuals in P based on the NTK;
3: i 1
4: while i � Max gen do
5: parents Select t parent individuals in P based on tournament selection;
6: Q Generate t offspring individuals from parents with mutation operators;
7: if i � G1 or G2 � i then
8: P Select N individuals in P [Q by environmental selection based on the

NTK;
9: else
10: P Select N individuals in P [Q by environmental selection based on the

individual lifespan values;
11: end if
12: i i þ 1
13: end while
14: return The architecture with the best test accuracy.

80 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

Each individual represents a network
architecture encoded based on the vari-
able-architecture encoding strategy. Var-
ious network architectures can be
constructed by searching for different
parameter combinations, which helps to
expand the search space. The condition
number of the NTK (KN) is set as the
training-free proxy to evaluate individu-
als. The evaluation time is significantly
reduced since complete network training
is avoided (Line 2). The iterative evolu-
tion process is divided into three stages
according to the different environmental
selection criteria. The first and third
stages use KN as the criterion to imple-
ment environmental selection, and the

second stage leverages the individual life-
span Lifespan as the criterion. Several
individuals in the population are selected
as parents based on tournament selection
(Line 5). The offspring are generated
from the parents through mutation oper-
ators (Line 6). After the offspring are con-
structed, they are evaluated and added to
the population once constructed. The
corresponding criterion is used for envi-
ronmental selection according to the
stage of the current evolution round.
Some individuals are eliminated (Line 8
and Line 10) to ensure that the number
of surviving individuals in the popula-
tion is consistent with that in the initial
population. Then, a new population

formed by the remaining individuals
enters into the next round. The evolu-
tion process continues until the prede-
fined maximum number of evolution
rounds is reached. Finally, the best net-
work architecture is decoded from the
individual in the final population with
the best fitness. The corresponding
flowchart is shown in Fig. 1.

B. Expanded Search Space Based on
the Reg Block
The network architectures in LoNAS
are constructed by a variable-architec-
ture encoding strategy based on a
novel network block called the Reg
Block. A well-designed search space
containing numerous potential net-
work architectures is crucial for NAS.
Therefore, five dimensions are
included to construct the LoNAS
search space: the length of the net-
work architecture, the number of
group convolutions, the width of each
group convolution, the stride of the
pooling layers, and the SENet mod-
ule. Compared with the search spaces
with fewer dimensions in [8], [9],
[46], the search space is expanded in
LoNAS since different network archi-
tectures can be constructed in more
flexible and fine ways. More potential
network architectures can be searched,
which leads to better solutions. An
overview of the search space and the
encoding strategy is shown in Fig. 2.

FIGURE 1. The flowchart of the LoNAS algorithm, where i is the evolution round, Max gen is the
maximum number of evolution rounds, and G1 and G2 are the two separation points in the three-
stage evolution process.

FIGURE 2. LoNAS search space and the encoding strategy. (a): The macro skeleton of the network architecture. (b): The topology of the Reg Block.
(c): The considered options for the network architecture parameters. (d): A flexible encoding strategy based on the Reg Block.

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 81

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

1)Network Architecture Macro
Skeletons
The proposed search space follows a
block-based design [8], [9], [26], in
which various network architectures are
flexibly constructed according to differ-
ent parameter options, as shown in
Fig. 2(a). The macro skeleton of each
network architecture is initialized with
a Conv Unit to extract the input data
features; this unit contains one 1� 1
convolutional layer with 64 output
channels and a batch normalization

layer [47]. The main body of the macro
skeleton includes unit num Reg Units.
Each Reg Unit is composed of
block num Reg Blocks. Each Reg Block
is generated randomly based on a set of
parameters that can be searched auto-
matically. A global average pooling
layer is placed at the end of the skeleton
to flatten the feature maps into a feature
vector. A fully connected layer with a
softmax layer is set as the classification
module to transform the feature vector
into the final prediction result. The

network architecture construction pro-
cess in the LoNAS search space is sum-
marized in Algorithm 2.

2)Reg Block
The standard convolution [2] achieves
good classification performance but
requires many parameters, which is not
conducive to designing highly accurate
network architectures with few param-
eters. In this paper, a novel network
block called the Reg Block is designed.
The Reg Block consists of group con-
volution [22] and SENet module [48].
The group convolution reduces the
number of parameters, and the SENet
module improves the classification per-
formance. The Reg Block topology is
shown in Fig. 2(b).

In the Reg Block, the input features
are partitioned into a certain number of
groups, decomposing the standard convo-
lution operation into multiple indepen-
dent convolution branches. Compared
with the standard convolution operation,
group convolution reduces the number
of parameters without remarkably re-
ducing the network classification per-
formance. Based on [22], the group
convolution is improved by adding three
convolutional layers and one pooling
layer in each branch, which allows the
network to extract more valuable features.
The first and fourth convolutional layers
use 1� 1 kernels to adjust the number of
feature maps, and the second convolution
layer uses 3� 3 kernels to extract feature
maps. All convolutional layers follow
a sequence, including a convolution oper-
ation, a ReLU [49], and a batch normali-
zation process. The pooling layer halves
the input data size and maintains the fea-
tures invariant, satisfying the calculation
constraint. For M �M input data, the
number of pooling layers used to halve
the data size cannot be larger than
blog 2ðMÞc, or the size of the input data is
reduced to less than 1. The Reg Block
output is formed by concatenating the
output features of each branch, the resid-
ual connections, and an SENet mod-
ule [48]. The SENet module simulates an
attention mechanism [50], [51] through
squeeze-and-excitation, which ensures that
the network architecture focuses on the

Algorithm 2. Network architecture construction in the LoNAS search space

Input: The size of the input dataM�M, unit num list, block num list, group list, width

list, f .
Output: The generated network architecture.
1: d Calculate the maximum number of pooling layers with a stride of 2 by

blog 2ðMÞc;
2: q An empty queue;
3: Construct a Conv Unit and add it to q;
4: unit num Randomly select a value in the unit num list;
5: for i 1 to unit num do
6: block num Randomly select a value in the block num list;
7: for j 1 to block num do
8: group;width Randomly select values in the group and width lists;
9: while group�width does not meet the constraint do
10: group;width Randomly reselect group and width;
11: end while
12: if The number of used pooling layers with a stride of 2 is less than d then
13: f Randomly select a value in {1, 2};
14: else
15: f 1;
16: end if
17: r Uniformly generate a value in [0, 1];
18: if 0:5 � r then
19: hasSENet 1;
20: else
21: hasSENet 0;
22: end if
23: block Generate a Reg Block according to the parameters group, width, f ,

and hasSENet;
24: Add the block to q;
25: end for
26: end for
27: q Construct a global average pooling layer and add it to q;
28: Generate a network architecture according to q;
29: return A network architecture

The novel network block in LoNAS, called Reg Block, is
composed of the group convolution and SENet module
and is used to reduce the number of parameters and
improve the classification performance.

82 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

most informative components of the fea-
tures, thereby improving the representa-
tional capacity of the network
architecture.

3)Variable-Architecture Encoding
Strategy
A variable-architecture encoding strat-
egy based on the Reg Block is designed
to construct a large search space with
numerous network architectures, as
shown in Fig. 2(c) and (d). Searching
different parameter combinations allows
various network architectures to be
flexibly constructed. First, the value of
the unit num parameter is randomly
selected to determine the initial number
of Reg Units. Then, in each Reg Unit,
block num Reg Blocks are randomly
generated.

As depicted in Fig. 2(b), the input of
each Reg Block comes from the output
of the previous Reg Block. The input
feature maps are divided into group
branches. Each branch has g channel
channels, which are determined by
in channel=group. The width of the bot-
tleneck of each branch is set as the width.
The stride of the pooling layer is denoted
as f . f is set to 2 when the feature map is
downsampled; otherwise, f is set to 1. At
the end of each Reg Block, an SENet
module is added with a 50% probability,
which improves the representational abil-
ity of the network without introducing
too many parameters. This dimensional-
ity is denoted by the parameter
hasSENet. The value of hasSENet is set to
either 1 or 0, representing whether an
SENet module is in the Reg Block.
When generating a Reg Block, the
parameters group and width are randomly
selected from two specified lists. The
parameter f is randomly selected from
{1, 2}. When the number of existing
pooling layers performing the halving
meets the preset constraint, f is set to 1.

These architectural parameters are auto-
matically searched and encoded as a digi-
tal string.

By including the group convolution
and SENet module, more dimensions for
constructing network architectures are
added, effectively expanding the search
space and allowing more networks with
better performance to be obtained.

4)Computational Restriction
The length of the network architecture
has an important effect on the test
accuracy [1]. Longer network architec-
tures generally obtain better test accu-
racy but require more parameters,
which makes these network architec-
tures more challenging to calculate.
Through careful structure design, some
short network architectures can achieve
good classification performance [2], [4],
and determining these architectures is
the goal of the algorithm proposed in
this paper. Although the lengths of the
network architectures in the LoNAS
search space can vary according to the
encoding strategy, the lengths are
restricted to ensure that the number of
parameters of each network architec-
ture in the search space is limited. Net-
work architectures with too many or
too few parameters can be avoided
since they are not the target, thereby
improving the search efficiency. The
number of convolutional layers deter-
mines the length of the network archi-
tecture:

Length ¼ 1þ
XUmax

i¼Umin

3 � Ublock
i (1)

where unit num is limited to the range
½Umin;Umax�. Ublock

i represents the num-
ber of Reg Blocks in the ith Reg Unit,
which corresponds to the parameter
block num. block num is limited to the
range ½blockmin; blockmax�. The number

of Reg Blocks in each Reg Unit must
be multiplied by a factor of 3 since
each Reg Block contains three convo-
lutional layers. The total length of the
network architecture is determined by
adding a convolutional layer in the
Conv Unit.

The number of convolutional ker-
nels also affects the number of network
parameters. When the convolutional
kernels are the same size, more convolu-
tional kernels improve the feature
extraction ability, leading to better clas-
sification performance for the network
architecture while requiring more
parameters. Therefore, the number of
convolutional kernels should also be
limited to avoid requiring too many
parameters. The number of convolu-
tional kernels reflects the number of
output feature maps in the intermediate
layer, which is determined by the prod-
uct of the group and width parameters.
The proposed encoding strategy imple-
ments two rules to restrict the number
of feature maps. The first rule is that
larger values have lower selection proba-
bilities when randomly selecting the
group and width parameters. The other
rule is that maximum and minimum
values are set for the product of group
and width. If group� width is larger than
the maximum value or less than the
minimum value, both parameters need
to be randomly selected again until the
product meets the limit. Algorithm 2
shows the application of these rules in
the construction of the network archi-
tecture. Under these rules, the overall
number of network architecture param-
eters in the search space is limited,
which guarantees better search perfor-
mance to discover highly accurate net-
work architectures with few parameters.

Compared to the coding strategies
in [9], [26], [46], there are more parame-
ter dimensions included in the proposed
encoding strategy. As a result, finer
blocks can be generated, and more vari-
ous network architectures can be discov-
ered. In addition, network architectures
with too few or too many parameters
that do not meet the parameter require-
ments are not generated by adding
computational restrictions, resulting in a

NTK can be used to characterize the trainability of each
network architecture and therefore is designed to
evaluate the performance of individuals in the
population that can significantly save search time and
computational resources.

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 83

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

more efficient search than other coding
strategies.

When the population is initialized,
the parameters unit num, block num,
group, width, and f are randomly selected
from the specified parameter settings to
generate individuals. More details on
the parameter settings are discussed in
Section IV.

C. Fitness of Individuals Based on a
Training-Free Proxy
Since training network architectures
through backpropagation requires

considerable search time in NAS, a train-
ing-free proxy is proposed to accelerate
the search procedure. In this paper, the
NTK is designed as the proxy and set as
the individual fitness. The NTK can be
used to characterize the trainability of
each network architecture. A higher
trainability represents a network architec-
ture with superior accuracy [52]. Accord-
ing to [37], the NTK can be formulated
as

mt Xtrainð Þ ¼ I � e�h�i t
� �

Ytrain (2Þ
where mtðxÞ denotes the network out-
puts, �i represents the eigenvalues of

the NTK between the training inputs,
Xtrain and Ytrain are drawn from the train-
ing set, t is the training step, and h is the
learning rate scale. The eigenvalues are
ordered �0 � � � � � �m, and KN ¼
�0=�m is set as the number of conditions.
m is the number of NTK eigenvalues.
The network becomes untrainable when
KN tends to be larger. KN can be calcu-
lated without gradient descent and is
used to characterize the trainability of the
network.

In this paper, KN is used as a proxy to
evaluate the classification performance of
different networks. This approach signifi-
cantly reduces the evaluation time since
the networks are not directly trained. In
an EA, evaluating individuals usually
requires considerable time. Therefore,
KN is applied to describe an individual’s
fitness during evolution, accelerating
the fitness evaluation in the EA. Fig. 3
shows the correlation between KN and
the test accuracy of the network architec-
tures among 200 individuals that were
randomly generated in the LoNAS search
space. Fig. 3 shows that KN is negatively
correlated with the test accuracy. During
the evolution process, minimizing KN

can help find network architectures with
high accuracy. The application of a train-
ing-free proxy saves considerable search
time and computational resources.

Fig. 3 shows some fluctuations in the
negative correlation. To study the fluc-
tuations between KN and the test accu-
racy, KN values of 11 different networks
are collected, as shown in Fig. 4. KN is
calculated 10 times for each network
architecture. For the same network
architecture, every time the input train-
ing data are randomly selected with the
same batch size, the KN result changes
within a range since KN is related to the
input data according to (2). A network
architecture with a test accuracy of
91.1% is taken as an example and plotted
as the dark dots in Fig. 4. The KN value
varies from 61 to 84. The following cal-
culation method is applied to reduce the
impact of this deviation. For each indi-
vidual, KN is calculated with 12 inde-
pendent runs. The highest and lowest
values are removed, and the average of
the remaining 10 values is set as the final

FIGURE 3. The negative correlation between KN and the architecture test accuracy in the LoNAS
search space on CIFAR-10. Dots in lighter colors represent more accurate network architectures.
The Kendall-tau correlation is �0:186.

FIGURE 4. Fluctuations in the correlation between KN and the test accuracy of the network
architecture in LoNAS on CIFAR-10. The 11 colored dots represent 11 different network
architectures. The KN of each network with fixed test accuracy is independently calculated 10
times with random training data on CIFAR-10.

84 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

KN result. In addition, performing mul-
tiple calculations ensures that the net-
work receives most input data rather
than a small part of the data, which
improves the generalization of the net-
work to the input data. In [37], KN

was combined with another indicator
calculated by normalization. In this
paper, only KN is applied to rank the
overall network architectures, as this
approach is simpler and thus accelerates
the search process.

D. Three-Stage EA Based on Multiple-
Criteria Environmental Selection
To balance exploration and exploitation,
a three-stage EA is proposed based on a
multiple-criteria environmental selection
strategy, which differs from other three-
stage EA methods [53], [54] with multi-
ple mutation strategies. The two criteria
are KN and the Lifespan [7], which indi-
cates the number of evolution rounds an
individual has experienced.

1) Process of the Three-Stage EA
The environmental selection criteria are
determined as follows:
where G1 and G2 are the round num-
bers used to divide the evolution pro-
cess, G represents the current round,
and Max gen is the maximum number

of evolution rounds. Fig. 5 shows the
whole evolution process of the three-
stage EA.

In the first stage (0 < G � G1)
and third stage (G2 < G � Max gen),
KN is applied as the environmental selec-
tion criterion. In the second stage
(G1 < G � G2), the individual’s lifespan
Lifespan is used as the environmental selec-
tion criterion. The evolution starts after
the population is initializedwith n individ-
uals. First, k individuals are randomly
selected. From these k individuals, t indi-
viduals with the best fitness are sampled as
the parents. t offspring individuals are con-
structed from the parents according to the
set of mutation operators described in Sec-
tion III-E. Once the offspring individuals
are constructed, they are evaluated and
added to the existing population, resulting
in t þ n individuals. Then, according to
the stage of the current evolutionary
round, the corresponding criterion is used
for environmental selection, eliminating
the t worst individuals. The remaining n
individuals form a new population that
enters the next evolution round.

2)Advantages of the Three-Stage EA
The search process of traditional EA
approaches is easily trapped in local
optima since most offspring inherit only

some of the good parents during evolu-
tion process [7]. In aging evolution [7],
individuals are discarded according to
their lifespans. During evolution, older
individuals with good fitness continue
to be discarded. These individuals are
removed as potential optimal solutions
from the search space, which slows the
population’s convergence, causing con-
vergence instability.

Comprehensively considering the
traditional EA and aging evolution pro-
cess, a three-stage EA is proposed in this
paper. In the first and third stages of evo-
lution, individuals with smallerKN values
are retained during the selection process.
In the second stage, younger individuals
in the population are saved. During the
first stage, outstanding individuals are
selected to enter the later evolutionary
process to ensure that offspring can
inherit from these individuals, improving
the overall performance of the popula-
tion and ensuring that sufficient potential
optimal solutions are contained in the
population. Then, in the second stage,
the population is frequently renewed,
enabling more exploration of the search
space and increasing the diversity of indi-
viduals. Moreover, a limited number of
rounds are performed to ensure that not
all good individuals are discarded. Finally,
in the third stage, outstanding individuals
are retained during the environmental
selection process, leading the population
to converge to the optimal solution,
which helps ensure exploitation. The
experiments conducted in Section IV
study the effectiveness of the multiple-
criteria environmental selection strategy.

E.Mutation Operators for the Block-
Based Network Architecture
The offspring individuals in the popula-
tion are generated from mutation opera-
tions. In this paper, mutation operators
are performed only in the Reg Unit,
while the Conv Unit is not involved due
to its specific function. For the mutation
operators, a mutation position posij,
which represents the position of the jth
Reg Block in the ith Reg Unit, is ran-
domly selected according to the length of
the parent individuals. TheRegUnit and
Reg Block positions determine the

FIGURE 5. The whole evolution process of the three-stage EA according to the different
environmental selection criteria.

The three-stage EA can effectively balance exploration
and exploitation by the environmental selection
process criteria based on the NTK and individual
lifespans.

Criterion ¼ KN if 0 < G � G1 or G2 < G � Max gen
Lifespan if G1 < G � G2

�
(3)

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 85

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

mutation position. Then, one of the
mutation operators is randomly selected
to carry out the parent individuals.
According to the block-based network
architecture, the designed mutation
operators are as follows:
❏ adding: Adding a Reg Block with

random settings;
❏ removing: Removing the Reg Block

at the selected position;
❏ altering: Randomly altering the

parameter values of the Reg Block
at the selected position.
More specifically, the adding operator

generates a Reg Block with random
parameters, which is inserted after posi-
tion posij. The removing operator deletes
the Reg Block at position posij. The alter-
ing operator randomly generates a new
set of parameters to replace the old
parameters of the Reg Block at position
posij. Fig. 6 shows examples of adding a
newReg Block and removing an existing
Reg Block. In Fig. 6(a), a newReg Block
is randomly generated and inserted after
Reg Block 11. In Fig. 6(b), Reg Block
23 is removed from Reg Unit 2. Nota-
bly, the length of the parent individual
must be considered when implementing
the adding and removing operators. If the
length reaches the upper limit, the adding
operator cannot be performed, and only
the other two types of operators can be
selected. When the length of the original
individual reaches the lower limit, the
removing operator cannot be imple-
mented. In addition, when the altering
operator is selected, the newly generated

parameters need to meet the restrictions
regarding the number of feature maps.

IV. Experiments
To investigate the effectiveness of the
proposed algorithm, three benchmark
datasets, CIFAR-10, CIFAR-100, and
ImageNet-16-120, are adopted to evalu-
ate the network architectures. The exper-
imental results of the proposed algorithm
are compared with those of different
state-of-the-art NAS algorithms.

A. Implementation Details

1)Benchmark Datasets
CIFAR-10 is a 10-class classification data-
set containing 50K training images and
10K testing images. CIFAR-100 is similar
to CIFAR-10 but contains 100 classifica-
tion categories. The training datasets are
split (80%n20%) to generate training and
validation datasets for ablation experi-
ments. The testing dataset is used only to
determine the final test accuracies of the
network architectures. The datasets are
augmented before training. In this work,
the same augmentation techniques that are
usually applied in other algorithms, such as
random cropping and random horizontal
flipping [2], [4], are employed to ensure a
fair comparison. In addition, the com-
monly used data preprocessing technique
cutout [55] is applied in this paper.

2)Hyperparameters of LoNAS
The number of Reg Units unit num is set
to {2, 3, 4}. The number of Reg Blocks

contained in one Reg Unit block num is
set to {3, 4}. Thus, the network length
ranges from [19-49] according to (1).
The available values for the group list in
the Reg Blocks are set to {2, 4, 8, 16, 32,
64}, and the width list is set to {4, 8, 16,
32, 64}. The maximum and minimum
numbers of network feature maps are
1024 and 64, respectively. To ensure that
the constructed network architectures
have limited numbers of parameters, the
larger values in the group and width lists
have lower selection probabilities. For
the group list, the probabilities of 2, 4, 6,
and 16 are set to 0.19, and the probabili-
ties of 32 and 64 are set to 0.12. For the
width list, the probabilities of 4, 8, and 16
are set to 0.24, while the probabilities of
32 and 64 are set to 0.14. During the
search process, the population size, the
maximum number of evolutions, and the
batch size for calculatingKN are set to 40,
50, and 32, respectively. The values of k
and t in the tournament selection process
are set to 5 and 2, respectively. To
achieve better evolutionary performance,
each stage in the environmental selection
process is set to a different length in the
experiments, as shown in Section IV-C.
The best individuals in the final popula-
tion are selected for training.

3)Network Training
During training, stochastic gradient
descent (SGD) with a momentum rate
of 0.9 and an L2 weight decay of 5�
10�4 is used to conduct training for 300
epochs. The learning rate is initialized
to 0.1 with a cosine decay schedule.
Then, the network architecture with
the best test accuracy is selected and
retrained independently 10 times with
the same routine. All the experiments
are performed on a single NVIDIA
1080Ti GPU.

B. Performance Investigation of the
Reg Block
Two ablation experiments are con-
ducted on CIFAR-10 dataset to verify
the effectiveness of the Reg Block. The
first experiment is performed to verify
the effectiveness of the group convolu-
tion, and the second experiment is used

FIGURE 6. Examples of the adding and removing mutation operators.

86 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

to investigate the effectiveness of the
SENet module. Ten individuals in the
final population are randomly selected

for both experiments, and all of these
individuals contain group convolution
and SENet modules.

The first ablation experiment was
performed to verify the impact of the
group convolution on the number of
parameters. The number of parameters
of each individual is recorded first.
Then, the group convolution of each
individual is transformed into a stan-
dard convolution while keeping the
remaining topology the same, and the
corresponding number of parameters is
recorded. The comparison results are
shown in Fig. 7. The green bar repre-
sents the group convolution results,
and the blue bar represents the stan-
dard convolution results. Fig. 7 shows
that the group convolution consumes
fewer parameters than the standard
convolution, and each individual with
the group convolution has appro-
ximately half the number of parame-
ters. Therefore, the group convolution
effectively reduces the number of
parameters.

In the second ablation experiment,
the effectiveness of the SENet module
in improving the test accuracy and
reducing the number of parameters is
verified. The test accuracy and number
of parameters of each individual are
recorded through 10 independent tri-
als. Then, all SENet modules of each
individual are removed, and the test
accuracy and number of parameters are
recorded. The comparison results
regarding the test accuracy and the
number of parameters are shown in
Fig. 8(a) and (b), respectively. In Fig. 8,
the blue line and the blue bar represent
the original network architectures, and
the green line and the green bar repre-
sent the architectures without SENet
modules. Fig. 8(a) shows that compared
to the original network architectures,
the accuracy of the networks without
the SENet modules is substantially
reduced, indicating that the SENet
module improves the accuracy. Fig. 8
(b) indicates that the addition of SENet
module only slightly increases the
number of parameters. These results
demonstrate that the SENet module
remarkably improves the classification
performance of the network architec-
ture while adding only a moderate
number of parameters.

FIGURE 7. Comparison of the number of parameters between the group convolution and the
standard convolution.

FIGURE 8. Performance comparison between original network architectures and those without
SENet modules.

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 87

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

C. The Effectiveness of the Three-
Stage EA and the Best Length
Division for the Three Stages
Six independent experiments are con-
ducted to investigate the effectiveness of
the three-stage EA. In each experiment,
an EA with the same number of evolu-
tion rounds and different lengths for the
three stages is implemented. The classifi-
cation performance of each final popula-
tion is recorded. Five experiments,
named Exp 1 � 5, have the same fixed
length for the first stage but different
lengths for the second and third stages to

investigate the effects of the three-stage
length on the population. Another
experiment named Exp 6 only goes
through the second stage. In Exp 1 � 5,
the value of G2 is changed to investigate
the impact of different stage lengths on
the validation accuracy of the final pop-
ulation. The length of the second stage is
recorded. In Fig. 9, each box represents
the overall validation accuracy of a pop-
ulation, the length of the box represents
the accuracy deviations between indi-
viduals, and the dot and dotted line in
the box represent the average and

median accuracy values, respectively.
The extended lines at both ends of the
box represent the maximum and mini-
mum accuracies. The light blue boxes
show the results of Exp 1 � 5, and the
green box represents the results ofExp 6.

Among the light blue boxes, when
the length of the second stage is set to 0,
the EA degenerates to the traditional EA
with fixed-criteria environment selec-
tion. Fig. 9 clearly shows that the average
validation accuracy achieved by the tra-
ditional EA is lower than the accuracies
of the other three-stage EAs. The second
stage helps the population to converge
to network architectures with better
classification performance since more of
the search space is explored.

When the length of the second
stage is increased, the population’s
average accuracy initially increases and
then decreases later. When the length
of the second stage is set to 50, which
is implemented in Exp 6, the EA
degenerates to an aging evolution pro-
cess. Fig. 9 shows that the green box
and its extended lines have the longest
lengths, which indicates the most
extensive search instability; it illustrates
a prolonged second stage that causes
the population to generate more indi-
viduals with poor fitness, reducing the
number of the optimal solution. The
box and extended lines of Exp 3 have
the shortest lengths, indicating that the
individuals in this population have the
smallest differences. Exp 3 shows that
utilizing a sufficient length for the third
stage improves the exploration ability
of the algorithm, which helps remove
poorly performing individuals and
increase the number of optimal solu-
tions. The stability of the search proce-
dure is also improved.

In summary, using an appropriate
length for each stage can help to effec-
tively balance exploration and exploita-
tion, leading to better optimal solutions.
Based on the ablation experiments,
when G1 and G2 are set to 15 and 30,
respectively, the population shows the
best performance. The lengths of the
three stages are set to 15, 15, and 20, and
the values of G1 ¼ 15 and G2 ¼ 30 are
used in the following experiments.

FIGURE 10. Comparison of the three-stage EA, traditional EA, and random search method in
terms of the test accuracy and the number of parameters.

FIGURE 9. The impact of the length of the second stage on the three-stage EA.

88 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 10 shows the search performa-
nce of different search algorithms in terms
of the test accuracy and number of parame-
ters. The proposed three-stage EA (brown
area) is compared with the traditional EA
(green-yellow area) and the random search
method (blue area). Each area describes the
overall performance of individuals in terms
of the test accuracy and the number of
parameters. Specifically, the same

population, which contains 20 randomly
generated individuals, is used for the three
search algorithms, and each algorithm goes
through 50 search iterations. In the tradi-
tional EA and the random search method,
KN is used to evaluate the performance of
the individuals. Fig. 10 shows that individ-
uals discovered by the three-stage EA have
higher test accuracy and fewer parameters
than those obtained by the traditional EA

and random search method. The overlap-
ping areas between those methods indicate
the similarity of the search performance. It
can be seen in Fig. 10 that the traditional
EA is slightly better than the random search
since there are many overlapping areas,
which means that many individuals found
by the traditional EA have similar perfor-
mance to those found by the random
search. The three-stage EA is much better
than the traditional EA since there are few
overlapping areas. Furthermore, the popu-
lations produced by the three-stage EA
have small parameter and test accuracy
ranges, indicating that the three-stage EA is
robust on the discovered solutions.

D.Overall Results
A set of the state-of-the-art algorithms are
used for comparison to comprehensively
evaluate the performance of the proposed
algorithm. The results are considered in
terms of the classification accuracy, number
of parameters, search time cost, and req-
uired computational resources. The com-
pared algorithms can be roughly divided
into three categories. The first category
includes manually-designed network arc-
hitectures. The second category contains
semiautomatic NAS. The third category
includes automatic NAS algorithms.
Table I shows the comparison results. The
results of peer competitors are obtained
from their published seminal papers. For
the proposed algorithm, the best network
architecture discovered by LoNAS
denoted as EX-Net, is selected from the
final populationwith 10 independent trials.

1)ComparisonWith Manually-
Designed Network Architectures
Comparing the proposed approach with
manually-designed state-of-the-art net-
work architectures, the results show that
EX-Net achieves considerably better test
accuracies on CIFAR-10 and CIFAR-
100 with less parameters than FractalNet
and Wide ResNet. Compared to Dense-
Net (k ¼ 24), EX-Net achieves better test
accuracy on CIFAR-10 and CIFAR-100,
and EX-Net uses only 7.3% and 15.8% of
the number of parameters in DenseNet
(k ¼ 24) on CIFAR-10 and CIFAR-100,
respectively. Compared to DenseNet-B
(k ¼ 40) and ResNeXt-29 (8x64d), the
test accuracy of EX-Net on CIFAR-10 is

TABLE I Comparison with the state-of-the-art peer competitors in terms of the test
accuracy (%), number of parameters (M), search GPU days, and number of GPUs used
on the CIFAR-10 and CIFAR-100 datasets. Test accuracy with mean and deviation are
reported.

CIFAR10 CIFAR100 PARAMETERS (M) SEARCH TIME
(GPU DAYS)

GPUs

Manually designed

FractalNet [56] 94.78 77.7 22.3 - -

DenseNet (k ¼ 24) [4] 96.26 80.75 27.2 - -

DenseNet-B (k ¼ 40) [4] 96.54 82.82 25.6 - -

Wide ResNet [57] 95.85 79.50 36.5 - -

ResNeXt-29 (8x64d) [58] 96.35 82.23 34.4 - 8

Semiautomatic

Hierarchical Evolution [59] 96.37 - 61.3 1.5 200

NASNet-A [13] 97.35 - 3.3 2000 500

DARTS [28] 97.0(0.14) - 3.3 1.5 1

P-DARTS [60] 97.5(0.12) - 3.4 0.3 1

PC-DARTS [40] 97.43(0.07) - 3.6 0.1 1

SP-DARTS [61] 97.29 - 3.64 0.11 1

ENAS(macro) [30] 96.13(0.12) - 38.0 0.32 1

ENAS(micro) [30] 97.11(0.11) - 4.6 0.5 1

Block-QNN-S [62] 95.62 79.35 6.1 90 32

TE-NAS [37] 97.37(0.064) - 3.8 0.05 1

AS-NAS [23] 97.67 - 16.6 - 8

Automatic

Large-scale Evolution [14] 94.60 - 5.4 2750 -

Large-scale Evolution [14] - 77.00 40.4 2750 -

NAS [63] 93.99 - 2.5 22400 800

AmoebaNet-A [7] 96.66(0.06) - 3.2 3150 450

AE-CNN [8] 95.7(0.18) - 2.0 27 3

AE-CNN [8] - 79.15(0.18) 5.4 36 3

CNN-GA [9] 96.78 - 2.9 35 3

CNN-GA [9] - 79.47 4.1 40 3

NSGA-Net [17] 97.5(0.10) - 26.8 4 1

LF-MOGP [64] 95.87 - 1.07 10 1

LF-MOGP [64] - 73.63 4.13 13 1

EX-Net(ours) 96.95(0.07) - 2.0 0.02 1

EX-Net(ours) - 81.52(0.07) 4.3 0.02 1

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 89

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

better. OnCIFAR-100, although the acc-
uracy of EX-Net is not as high, the num-
ber of parameters in EX-Net only
consumes 16.8% and 12.5% of the num-
bers of parameters in DenseNet-B
(k ¼ 40) and ResNeXt-29 (8x64d),
respectively, demonstrating a significant
reduction. EX-Net uses only 1/8 of the
GPU resources consumed by ResNeXt-
29 (8x64d). In summary, EX-Net ach-
ieves higher accuracy than the state-of-
the-art manually-designed network archi-
tectures and significantly outperforms all
competing approaches on CIFAR-10.
Additionally, EX-Net employs substan-
tially fewer parameters than these compar-
ison algorithms.

2)Comparison With Semiautomatic
NASMethods
Regarding the semiautomatic NAS algo-
rithms, EX-Net outperforms Hierarchical
Evolution, Block-QNN-S, and ENAS
(macro) in terms of the test accuracy and
number of parameters while significantly
reducing the search time cost
(16x�4500x reductions). Compared to
NASNet-A, EX-Net shows slightlyworse
test accuracy but requires fewer parameters
than NASNet-A. Moreover, EX-Net is
100,000x faster thanNASNet-A and con-
sumes only approximately 1/500 of the
GPU resources consumed byNASNet-A.
DARTS and ENAS (micro) achieve
slightly better accuracy on CIFAR-10
than EX-Net, while EX-Net has fewer
parameters. DARTS and ENAS (micro)
have larger deviations in test accuracy than
EX-Net. With the same GPU resource
consumption, EX-Net takes 75x and 25x
less search time than these two methods.
Compared to P-DARTS and PC-
DARTS, EX-Net consumes fewer
parameters and GPUDays while showing
slightly reduced test accuracy. Moreover,
EX-Net can achieve more minor devia-
tions across different search rounds. SP-
DARTS achieves slightly better accuracy
on CIFAR-10 than EX-Net but has
nearly 2x more parameters and 5x more
search time. In addition, although the
accuracy of EX-Net is less than that of
TE-NAS, the number of EX-Net param-
eters and the number of GPU Days
consumed by EX-Net are only half of

those required by TE-NAS. Compared to
AS-NAS, EX-Net shows lower test
accuracy. However, EX-Net consumes
nearly 9x fewer parameters and requires

only 8x fewer computational resources
than AS-NAS and is thus competitive
algorithm. Therefore, compared to the
semiautomatic NAS algorithms, EX-Net

TABLE II Search time (minutes) on CIFAR-10 and CIFAR-100 by LoNAS.

NO. OF RUNS 1 2 3 4 5 6 7 8 9 10 AVERAGE VARIANCE

CIFAR-10 28.8 29.5 28.4 28.7 29.4 29.1 28.7 28.3 29.4 28.8 28.91 0.16

CIFAR-100 28.7 28.6 29.4 29.3 29.1 28.6 28.9 29.4 29.3 29.4 29.07 0.10

TABLE III The best architecture on CIFAR-10 by comprehensively considering the test
accuracy and the number of parameters of the network architectures.

TYPE BLOCK CONFIGURATION

Conv Unit - input size=32*32, input channel=3, output channel=64

Reg Unit1 Reg Block1 group=16, width=8, hasSENet=1, f=1

Reg Block2 group=16, width=32, hasSENet=1, f=1

Reg Block3 group=8, width=8, hasSENet=1, f=2

Reg Block4 group=64, width=16, hasSENet=1, f=2

Reg Unit2 Reg Block5 group=8, width=8, hasSENet=0, f=1

Reg Block6 group=16, width=8, hasSENet=1, f=1

Reg Block7 group=32, width=8, hasSENet=1, f=1

Reg Unit3 Reg Block8 group=4, width=16, hasSENet=1, f=1

Reg Block9 group=64, width=8, hasSENet=1, f=2

Reg Block10 group=32, width=4, hasSENet=1, f=1

Reg Block11 group=32, width=16, hasSENet=0, f=1

TABLE IV The best architecture on CIFAR-100 by comprehensively considering the test
accuracy and the number of parameters of the network architectures.

TYPE BLOCK CONFIGURATION

Conv Unit - input size=32*32, input channel=3, output channel=64

Reg Unit1 Reg Block1 group=8, width=32, hasSENet=1, f=1

Reg Block2 group=16, width=4, hasSENet=1, f=1

Reg Block3 group=4, width=32, hasSENet=0, f=1

Reg Unit2 Reg Block4 group=32, width=8, hasSENet=1, f=2

Reg Block5 group=16, width=16, hasSENet=1, f=1

Reg Block6 group=16, width=4, hasSENet=0, f=1

Reg Block7 group=16, width=4, hasSENet=1, f=1

Reg Unit3 Reg Block8 group=4, width=16, hasSENet=0, f=1

Reg Block9 group=4, width=16, hasSENet=0, f=1

Reg Block10 group=16, width=16, hasSENet=0, f=1

Reg Block11 group=64, width=4, hasSENet=1, f=1

Reg Unit4 Reg Block12 group=16, width=8, hasSENet=1, f=2

Reg Block13 group=16, width=8, hasSENet=1, f=1

Reg Block14 group=16, width=16, hasSENet=1, f=1

Reg Block15 group=32, width=16, hasSENet=1, f=1

90 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

shows competitive test accuracy while
exhibiting an advantage in terms of the
number of parameters. Furthermore, EX-
Net greatly reduces the search time cost
and the required computational resource
consumption.

3)Comparison With Automatic
NASMethods
Compared to the competing comple-
tely automatic NAS algorithms, EX-
Net exhibits great superiority over
Large-scale Evolution and NAS in
terms of the accuracy and number of
parameters. In addition, EX-Net con-
sumes only 0.02 GPU Days, which is
substantially less than Large-scale Evo-
lution and NAS. Additionally, the
GPU resources required by EX-Net
are 800x less than those required by
NAS. EX-Net has better test accuracy
and fewer parameters than Amoeba-
Net-A. The GPU Days required by
EX-Net is only 0.02, which is 1/
157,500 of that needed by Amoeba-
Net-A, and the computational resour-
ces required by the GPU are just 1/450
of those demanded by AmoebaNet-A.
EX-Net is better than AE-CNN in
terms of the mean and deviation of test
accuracy and the number of parameters
on CIFAR-10 and CIFAR-100. EX-
Net can obtain a better improvement
in the search time cost and the required
GPU resource consumption. Compared
to CNN-GA, EX-Net has a higher
test accuracy on CIFAR-10 and has
fewer parameters. In addition, EX-Net
achieves better accuracy on the more
complex CIFAR-100 dataset, while the
number of parameters is close to that of
CNN-GA. The search time of EX-Net

is approximately 1/1750 of that con-
sumed by CNN-GA. NSGA-Net
attains slightly better accuracy than EX-
Net on CIFAR-10 (97.5% vs. 96.95%),
but EX-Net has smaller deviations of
test accuracy (0.07 vs. 0.10), and only
consumes 1/13 of the parameters
required by NSGA-Net (2.0M vs.
26.8M). When using the same compu-
tational resources, the search time of
EX-Net is 200x less than that of
NSGA-Net. Compared to LF-MOGP,
EX-Net can achieve a significant adv-
antage in terms of accuracy on both
datasets. Moreover, EX-Net only con-
sumes 0.02 GPU Days, which is 500x
less than LF-MOGP. Therefore, EX-
Net shows significant advantages over
automatic algorithms in all objectives.

4)Discussion
In summary, EX-Net outperforms most
manually-designed network architec-
tures in terms of the test accuracy while
requiring fewer parameters. EX-Net
also shows excellent advantages over
most of the automatic NAS algorithms
regarding test accuracy and the number
of parameters. The proposed approach
also requires fewer GPU resources and
achieves 200x to 1,120,000x search
time reductions. Compared to the semi-
automatic NAS algorithms, the test
accuracy advantage of EX-Net is not
apparent since other algorithms involve
manual fine-tuning. However, EX-Net
can achieve more minor deviations in
test accuracy, which demonstrates the
robustness and stability of the EX-Net.
Furthermore, EX-Net utilizes fewer
parameters, and the search time cost and
computational resource consumption

are significantly reduced, which is the
primary purpose of the work in this
paper.

Table II shows that each run by
LoNAS has a similar search time on
CIFAR-10 and CIFAR-100, demon-
strating the robustness of the proposed
algorithm regarding the time cost. By
comprehensively considering the test
accuracies and the number of parame-
ters, Tables III and IV show the best
network architectures discovered by the
proposed algorithm on the CIFAR-10
and CIFAR-100 datasets. They also
show that the best network architecture
obtained on CIFAR-10 is composed of
three Reg Units with 34 convolutional
layers. The network FLOPs are 0.91 G.
The best network architecture obtained
on CIFAR-100 comprises four Reg
Units of 46 convolutional layers, and
the FLOPs of the network are 1.05 G.

E. Transferability
The ImageNet-16-120 dataset [65] is
also considered for investigating the
transferability of the network architec-
tures searched by LoNAS on the
CIFAR-10 and CIFAR-100 datasets.
The same training settings as mentioned
in Section IV-A are used. The compari-
son results in Table V show that the net-
work architecture searched on CIFAR-
10 obtains better test accuracy than most
manually-designed and automatic archi-
tectures. The network architecture
searched on CIFAR-100 achieves the
best test accuracy on ImageNet-16-120
while consuming minimal GPU Days
and GPU resources. The results indicate
that LoNAS has good transferability to
other datasets.

V. Conclusion
This paper proposes a LoNAS method
that can quickly search for network
architectures with high accuracy and
few parameters. The computational
resources required by LoNAS to find
the network architectures are also low.

In LoNAS, a Reg Block is proposed
based on group convolution and the
SENet module, which helps improve
the accuracy while reducing the number
of parameters. A variable-architecture

TABLE V Comparison of different network architectures on ImageNet-16-120.

ARCHITECTURE TESTACCURACY(%) PARAMETERS(M) GPU DAYS GPUs

ENAS [30] 16.32 4.6 0.5 1

AmoebaNet-A [7] 46.21 3.2 3150 450

DARTS [28] 16.32 3.3 1.5 1

P-DARTS [60] 45.24 5.3 0.3 1

PC-DARTS [40] 45.53 6.2 0.1 1

GDAS [27] 42.21 2.5 0.3 1

EX-Net(CIFAR-10)(ours) 44.56 2.0 0.02 1

EX-Net(CIFAR-100)(ours) 46.87 4.3 0.02 1

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 91

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

encoding strategy based on the Reg
Block is designed to construct an
expanded search space. A training-free
proxy is proposed to evaluate individuals
based on the NTK, reducing the time
and computational resource costs. Fur-
thermore, a three-stage EA based on
multiple-criteria environmental selec-
tion is designed to balance the explora-
tion and exploitation of the proposed
algorithm. A set of mutation operators is
proposed and applied to the Reg Block
to explore more of the search space.

The proposed algorithm is examined
on two representative benchmark datasets,
CIFAR-10 and CIFAR-100, and com-
pared with various state-of-the-art algo-
rithms, including manually-designed
network architectures, semiautomatic net-
work architectures, and automatic net-
work architectures. The experimental
results show that the network architectures
found by LoNAS outperformmostmanu-
ally-designed and automatic architectures
in terms of classification performance and
the number of parameters. The network
architectures also achieve the competitive
performance on the semiautomatic archi-
tectures in terms of test accuracy while
improving most algorithms in the number
of required parameters. More importantly,
LoNAS shows significant advantages in
reducing the search time cost and compu-
tational resource consumption. Finally,
the architectures found on CIFAR-10 and
CIFAR-100 can be transferred to Image-
Net-16-120with good performance.

In LoNAS, two computational con-
straints are designed to limit the number
of network architecture parameters in the
search space; these constraints compress
the search space and reduce the diversity
to some extent. Future work will explore
other methods to balance the trade-off
between multiple objectives in larger
search spaces. In addition, the NTK
should be improved since the performance
of theNTK conditions fluctuates.

Acknowledgment
This work was supported in part by the
National Natural Science Foundation
of China under Grants 62073155,
62002137, 62106088, and 62206113;
in part by Jiangsu University, China

through Blue Project; and in part by
Guangdong Provincial Key Laboratory
under Grant 2020B121201001.

References
[1] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image rec-
ognition,” in Proc. Int. Conf. Learn. Representations,
2015.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.
[3] C. Szegedy et al., “Going deeper with convolu-
tions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2015, pp. 1–9.
[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.
Weinberger, “Densely connected convolutional net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2017, pp. 4700–4708.
[5] B. Baker, O. Gupta, N. Naik, and R. Raskar,
“Designing neural network architectures using rein-
forcement learning,” 2016, arXiv:1611.02167.
[6] A. Brock, T. Lim, J. Ritchie, and N. Weston,
“SMASH: One-shot model architecture search
through hypernetworks,” in Proc. Int. Conf. Learn.
Representations, 2018.
[7] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le,
“Regularized evolution for image classifier architec-
ture search,” in Proc. AAAI Conf. Artif. Intell., 2019,
vol. 33, pp. 4780–4789.
[8] Y. Sun, B. Xue, M. Zhang, and G. Yen,
“Completely automated CNN architecture design
based on blocks,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 31, no. 4, pp. 1242–1254, Apr. 2020.
[9] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv,
“Automatically designing CNN architectures using
the genetic algorithm for image classification,” IEEE
Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, Sep.
2020.
[10] Z. Sun, M. Lin, X. Sun, Z. Tan, H. Li, and R.
Jin, “MAE-Det: Revisiting maximum entropy princi-
ple in zero-shot NAS for efficient object detection,”
in Proc. Int. Conf. Mach. Learn., 2022, pp. 20810–
20826.
[11] S. Liu et al., “EVSRNet: Efficient video super-
resolution with neural architecture search,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 2480–2485.
[12] S. Xu and H. Quan, “ECT-NAS: Searching effi-
cient CNN-transformers architecture for medical
image segmentation,” in Proc. IEEE Int. Conf. Bioinf.
Biomed., 2021, pp. 1601–1604.
[13] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le,
“Learning transferable architectures for scalable image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 8697–8710.
[14] E. Real et al., “Large-scale evolution of image
classifiers,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2902–2911.
[15] A. G. Howard et al., “MobileNets: Efficient con-
volutional neural networks for mobile vision applica-
tions,” 2017, arXiv:1704.04861.
[16] M. Sandler, A. Howard, M. Zhu, A. Zhmogi-
nov, and L.-C. Chen, “MobileNetv2: Inverted resid-
uals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.
[17] Z. Lu et al., “NSGA-Net: Neural architecture
search using multi-objective genetic algorithm,” in
Proc. Genet. Evol. Comput. Conf., 2019, pp. 419–427.
[18] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient
multi-objective neural architecture search via
lamarckian evolution,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.
[19] T. Back, Evolutionary Algorithms in Theory and Prac-
tice: Evolution Strategies, Evolutionary Programming, Genetic
Algorithms. London, U.K.: Oxford Univ. Press, 1996.
[20] L. Xie and A. Yuille, “Genetic CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 1379–1388.

[21] O. Russakovsky et al., “ImageNet large scale
visual recognition challenge,” Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, 2015.
[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional
neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, vol. 25, pp. 1097–1105.
[23] T. Zhang, C. Lei, Z. Zhang, X.-B. Meng, and
C. P. Chen, “AS-NAS: Adaptive scalable neural
architecture search with reinforced evolutionary algo-
rithm for deep learning,” IEEE Trans. Evol. Comput.,
vol. 25, no. 5, pp. 830–841, Oct. 2021.
[24] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct
neural architecture search on target task and hardware,”
in Proc. Int. Conf. Learn. Representations, 2018.
[25] B. Wu et al., “FBNet: Hardware-aware efficient
convnet design via differentiable neural architecture
search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., 2019, pp. 10734–10742.
[26] Z. Lu, K. Deb, E. Goodman, W. Banzhaf, and
V. N. Boddeti, “NSGANetv2: Evolutionary multi-
objective surrogate-assisted neural architecture search,”
in Proc. Eur. Conf. Comput. Vis., 2020, pp. 35–51.
[27] X. Dong and Y. Yang, “Searching for a robust
neural architecture in four GPU hours,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 1761–1770.
[28] H. Liu, K. Simonyan, and Y. Yang, “Darts: Dif-
ferentiable architecture search,” in Proc. Int. Conf.
Learn. Representations, 2018.
[29] C. Liu et al., “Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 82–92.
[30] H. Pham, M. Guan, B. Zoph, Q. Le, and J.
Dean, “Efficient neural architecture search via param-
eters sharing,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 4095–4104.
[31] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M.
Salzmann, “Evaluating the search phase of neural
architecture search,” in Proc. Int. Conf. Learn. Represen-
tations, 2020.
[32] S. Xie, A. Kirillov, R. Girshick, and K. He,
“Exploring randomly wired neural networks for
image recognition,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 1284–1293.
[33] C. Liu et al., “Progressive neural architecture search,”
in Proc. Eur. Conf. Comput. Vis., 2018, pp. 19–34.
[34] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han,
“Once-for-all: Train one network and specialize it for
efficient deployment,” in Proc. Int. Conf. Learn. Repre-
sentations, 2019.
[35] R. Luo, X. Tan, R. Wang, T. Qin, E. Chen, and
T.-Y. Liu, “Semi-supervised neural architecture
search,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
vol. 33, pp. 10547–10557.
[36] J. Mellor, J. Turner, A. Storkey, and E. J.
Crowley, “Neural architecture search without
training,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 7588–7598.
[37] W. Chen, X. Gong, and Z. Wang, “Neural
architecture search on imagenet in four GPU hours: A
theoretically inspired perspective,” in Proc. Int. Conf.
Learn. Representations, 2020.
[38] A. Jacot, F. Gabriel, and C. Hongler, “Neural
tangent kernel: Convergence and generalization in
neural networks,” in Proc. 32nd Int. Conf. Neural Inf.
Process. Syst., 2018, pp. 8580–8589.
[39] B. Hanin and M. Nica, “Finite depth and width
corrections to the neural tangent kernel,” in Proc. Int.
Conf. Learn. Representations, 2019.
[40] Y. Xu et al., “PC-darts: Partial channel connec-
tions for memory-efficient architecture search,” in
Proc. Int. Conf. Learn. Representations, 2019.
[41] S.-Y. Huang and W.-T. Chu, “Searching by
generating: Flexible and efficient one-shot NAS with
architecture generator,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 983–992.
[42] A. Klos, M. Rosenbaum, and W. Schiffmann,
“Neural architecture search based on genetic algorithm
and deployed in a bare-metal kubernetes cluster,” Int. J.
Netw. Comput., vol. 12, no. 1, pp. 164–187, 2022.

92 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2023

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

[43] J. K. Kim,W. Ahn, S. Park, S.-H. Lee, and L. Kim,
“Early prediction of sepsis onset using neural architecture
search based on genetic algorithms,” Int. J. Environ. Res.
Public Health, vol. 19, no. 4, 2022, Art. no. 2349.
[44] M. Lin et al., “ZEN-NAS: A zero-shot NAS
for high-performance image recognition,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 347–356.
[45] Y. Sun, B. Xue, M. Zhang, and G. G. Yen,
“Evolving deep convolutional neural networks for
image classification,” IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 394–407, Apr. 2020.
[46] L. Zhao and W. Fang, “An efficient and flexible
automatic search algorithm for convolution network
architectures,” in Proc. IEEE Congr. Evol. Comput.,
2021, pp. 2203–2210.
[47] S. Ioffe and C. Szegedy, “Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift,” in Proc. Int. Conf. Mach. Learn.,
2015, pp. 448–456.
[48] J. Hu, L. Shen, and G. Sun, “Squeeze-and-
excitation networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 7132–7141.
[49] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse
rectifier neural networks,” in Proc. 14th Int. Conf. Artif.
Intell. Statist. Workshop, 2011, pp. 315–323.
[50] C. Cao et al., “Look and think twice: Capturing
top-down visual attention with feedback convolu-
tional neural networks,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2015, pp. 2956–2964.

[51] M. Jaderberg et al., “Spatial transformer net-
works,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
vol. 28, pp. 2017–2025.
[52] Y. Shin and G. E. Karniadakis, “Trainability of
ReLU networks and data-dependent initialization,” J.
Mach. Learn. Model. Comput., vol. 1, no. 1, pp. 39–74,
2020.
[53] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and
M. F. Tasgetiren, “Differential evolution algorithm
with ensemble of parameters and mutation strategies,”
Appl. Soft Comput., vol. 11, no. 2, pp. 1679–1696,
2011.
[54] X.-G. Zhou, G.-J. Zhang, X.-H. Hao, L. Yu,
and D.-W. Xu, “Differential evolution with
multi-stage strategies for global optimization,” in
Proc. IEEE Congr. Evol. Comput., 2016, pp. 2550–
2557.
[55] T. DeVries and G. W. Taylor, “Improved regu-
larization of convolutional neural networks with cut-
out,” 2017, arXiv:1708.04552.
[56] G. Larsson, M. Maire, and G. Shakhnarovich,
”Fractalnet: Ultra-deep neural networks without
residuals,” 2016, arXiv:1605.07648.
[57] S. Zagoruyko and N. Komodakis, “Wide residual
networks,” in Proc. Brit. Mach. Vis. Conf., Assoc.,
2016, pp. 87.1–87.12.
[58] S. Xie, R. Girshick, P. Doll�ar, Z. Tu, and K. He,
“Aggregated residual transformations for deep neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 1492–1500.

[59] H. Liu, K. Simonyan, O. Vinyals, C. Fernando,
and K. Kavukcuoglu, “Hierarchical representations
for efficient architecture search,” in Proc. Int. Conf.
Learn. Representations, 2018.
[60] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progres-
sive differentiable architecture search: Bridging
the depth gap between search and evaluation,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 1294–1303.
[61] Z. Zhao, Y. Kang, A. Hou, and D. Gan,
“SP-DARTS: Synchronous progressive differentia-
ble neural architecture search for image classifica-
tion,” IEICE Trans. Inf. Syst., vol. 104, no. 8,
pp. 1232–1238, 2021.
[62] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L.
Liu, “Practical block-wise neural network architecture
generation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 2423–2432.
[63] B. Zoph and Q. Le, “Neural architecture search
with reinforcement learning,” in Proc. Int. Conf. Learn.
Representations, 2017.
[64] Q. Liu, X. Wang, Y. Wang, and X. Song, “Evo-
lutionary convolutional neural network for image
classification based on multi-objective genetic pro-
gramming with leader–follower mechanism,” Com-
plex Intell. Syst., pp. 1–18, 2022.
[65] P. Chrabaszcz, I. Loshchilov, and F. Hutter,
“A downsampled variant of imagenet as an alterna-
tive to the CIFAR datasets,” 2017, arXiv:1707.
08819.

MAY 2023 | IEEE COMPUTATIONAL INTELLIGENCEMAGAZINE 93

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on July 06,2023 at 08:58:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

