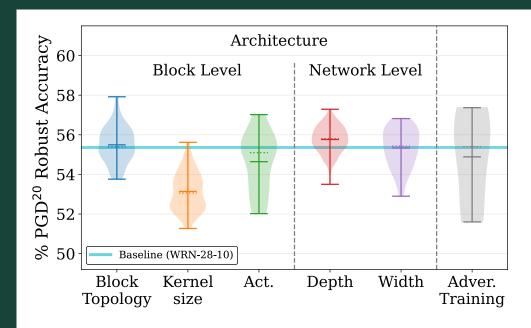
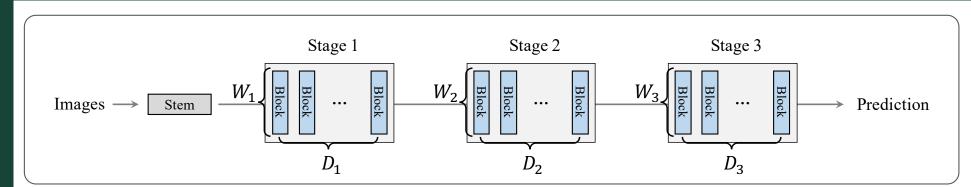
Revisiting Residual Networks for Adversarial Robustness

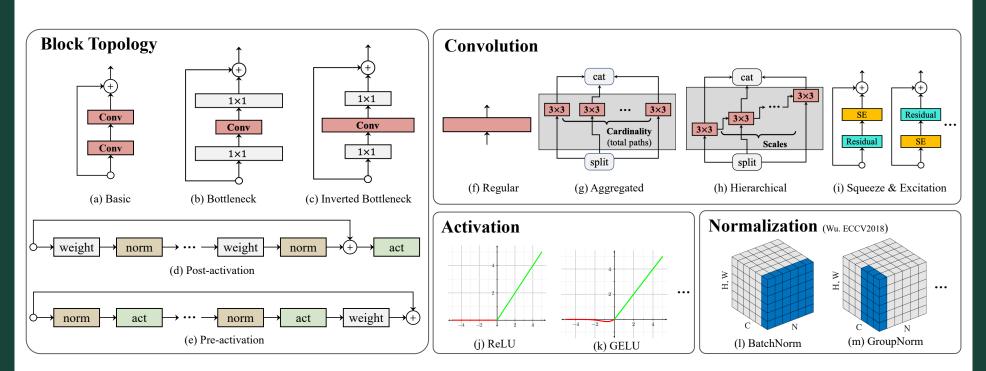
Shihua Huang¹, Zhichao Lu², Kalyanmoy Deb¹, Vishnu Naresh Boddeti¹


1 Michigan State University, East Lansing, MI 2 Sun Yat-sen University, China

Correspondence: luzhichaocn@gmail.com



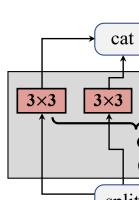
Motivation

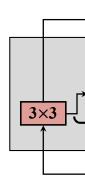


- Existing work on adversarial defenses focuses on better adversarial training.
- Architectural components can impact adversarial robustness as much as different adversarial training methods.


Overview

Network scaling level: depth (D_1, D_2, D_3) and width (W_1, W_2, W_3)


Block level: variants of residual blocks and their components, including convolution, activation, kernel size, normalization, etc.


Results


- Our final RobustResNets are based on RobustResBlock (block level) and RobustScaling (network level).
- SoTA performance, ~1 % Autoattack improvement over the second best.
- 2x more compact than others.

57.0	•
56.0 ·	A
Accuracy 82.0	0-0
OF 24.0	4
53.0 Sopust 52.0	A
8 52.0 € %	
51.0	G-⊖ Post-ac A-A Pre-act
50.0	50 1

SE (r = 64)

 $| BN \rightarrow ReLU \rightarrow 1 \times 1$

~---+---

Conv

·-----

 $BN \rightarrow ReLU \rightarrow 1 \times 1$

Block Level Design

57.0 **∆-** ▲ Basic **△-**▲ Bottleneck act PGD²⁰ . Post-act CW⁴⁰ ▶ Post-act PGD²⁰ ⊡··⊡ Post-act CW⁴⁰ 51.0 O-O Post-act PGD²⁰ ⊡…⊡ Post-act CW⁴⁰ A-A Inverted 50.0 $4 \land A$ Pre-act PGD²⁰ $\land A$ Pre-act CW⁴⁰ t PGD²⁰ $\leftrightarrow \diamond$ Pre-act CW⁴⁰ ▲ Pre-act PGD²⁰ \leftrightarrow Pre-act CW⁴⁰ A-A No residual 100 150 200 No. of Parameters (M) 100 150 200 250 100 150 200 250 150 200 250 No. of Parameters (M) No. of Parameters (M) No. of Parameters (M) (a) Basic (d) Comparison among (a) – (c) (b) Bottleneck (c) Inverted Bottleneck Impact of Aggregated Convolutions 3×3 ⊖ ⊖ PGD²⁰ .0 0 PGD²⁰ ¥ 56.5 ⊖ ⊖ Bottleneck PGD²⁰ ... ಕ್ಷ 55.5 - ⊡--E CW⁴⁰ CW⁴⁰ Bottleneck CW⁴⁰ Cardinality \$ 54.5 (total paths 54.0 4 Cardinality 4 Cardinality spli Cardinality (a) Aggregated convolution (b) $D_i = 5$, $W_i = 12$ (c) $D_i = 7, W_i = 14$ (d) $D_i = 11, W_i = 16$ Impact of Hierarchical Convolutions 58.0 Bottleneck PGD²⁰ ⊖ → Bottleneck PGD²⁰ ⊖ → Bottleneck PGD²⁰ G→ E Bottleneck CW⁴⁰ G→E Bottleneck CW⁴⁰ Bottleneck CW⁴⁰ → 3×3 → • • • − 3×3 -Scales 54.0 56.0Scales Scales Scales 55.5 (b) $D_i = 5, W_i = 12$ (d) $D_i = 11, W_i = 16$ (a) Hierarchical convolution (c) $D_i = 7, W_i = 14$ \$ 55.0+ **Impact of Activation** $\rightarrow 0$ PGD²⁰ G→€ CW⁴⁰ **⊡**-€ CW⁴⁰ $\Theta \rightarrow PGD^2$ □ - E CW⁴⁰ PGD² G-⊖ PGD²⁰ (BN w/o wd) G-E CW⁴⁰ (BN w/o wd) -⊖ PGD²⁰ (BN w/o wd) ⊡-E CW⁴⁰ (BN w/o wd) G-⊖ PGD²⁰ (BN w/o wd) ⊡-⊡ CW⁴⁰ (BN w/o wd) ≈ 52.5 – 55.0 46.0 ^{2e-4} Weight Decay 5e-4 Weight Decay Weight Decay Weight Decay (a) ReLU (b) SiLU (c) GELU (d) Softplus <u>RobustResBlock</u> 59.0 G→ WRNs \square WRNs w/ RobustResBlock D = 11, W = 16Hierarchically aggregated <u>ප</u> 58.0 convolution D = 7, W = 14ບ 57.0-

 y_1 y_2 y_3 \cdots y_8

3 × 3

c = 4

 x_1 x_2 x_3 \cdots x_8

3 × 3

c = 4

 $\rightarrow \cdots$

 $\rightarrow \uparrow$ 3 × 3

c = 4

Impact of Residual Topology

200 50 100 150 No. of Parameters (M)

D = 7, W = 14

 $7 \times$ fewer parameters

D = 5

W = 1

D = 4, W = 10

(WRN-28-10)

O = 5, W = 12

D=4

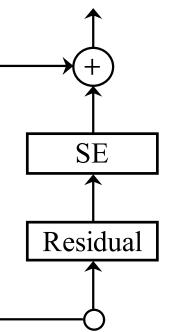
W =

ts 56.0

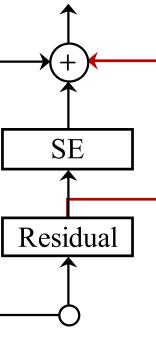
Robui

54.0

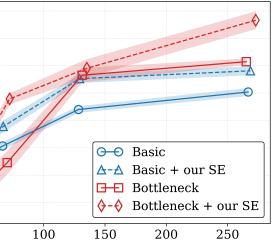
53.0-

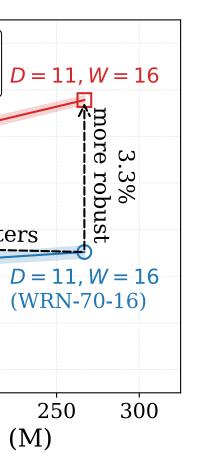

52.0-

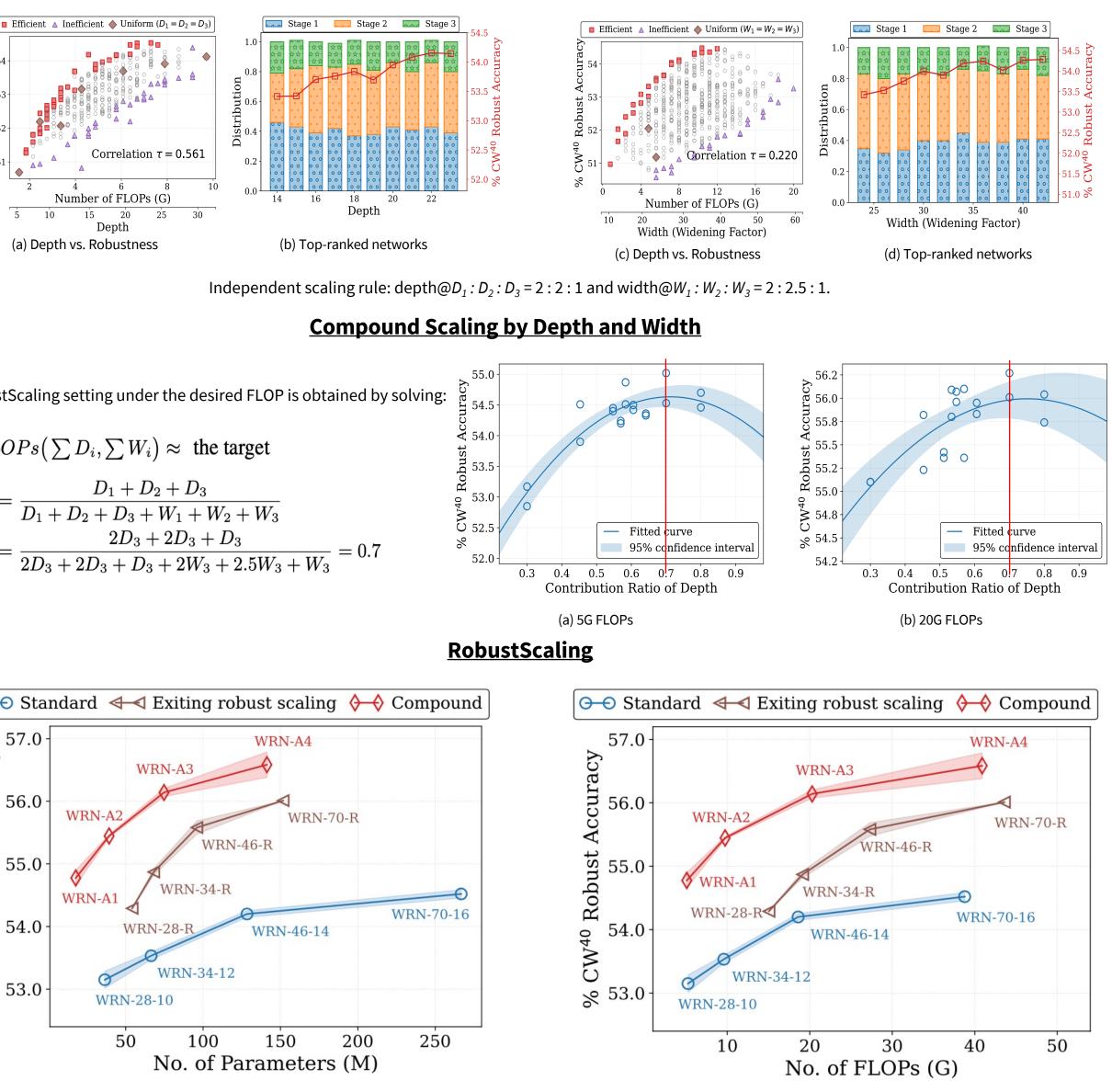
%


Network Level Design

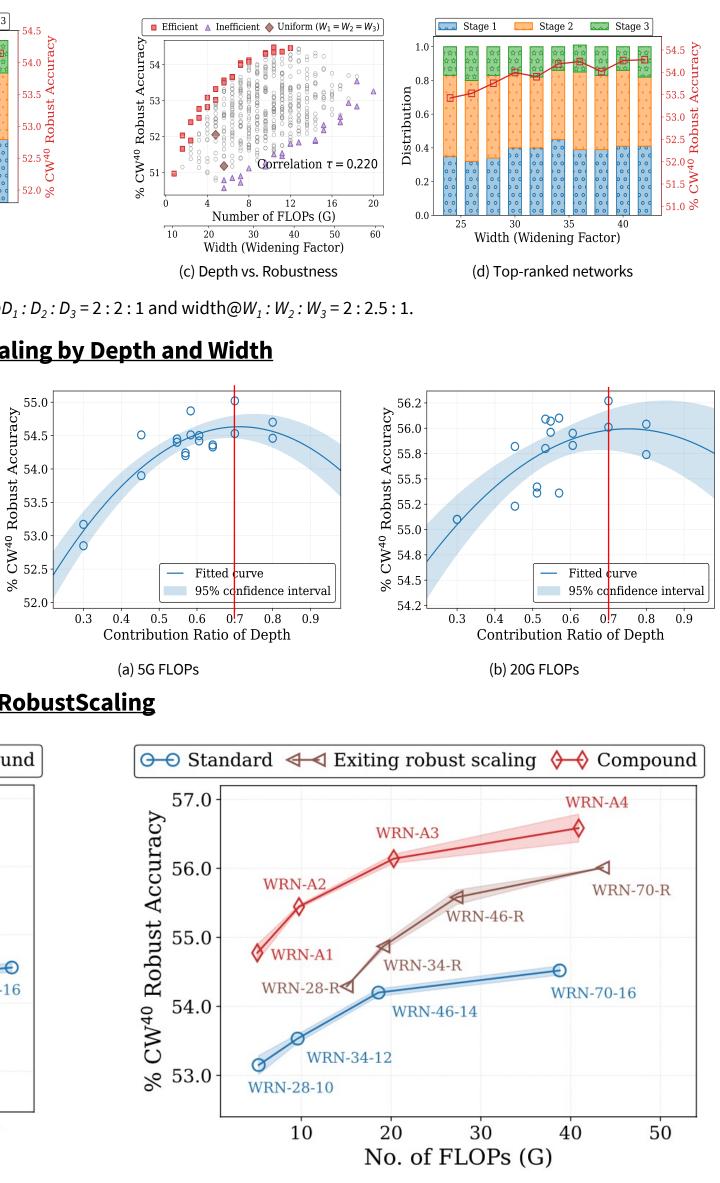
Independent Scaling by Depth or Width

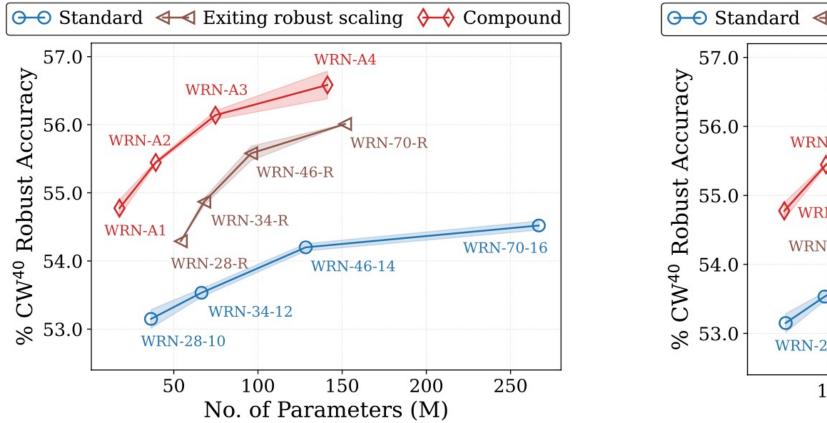



Standard SE



Our SE


No. of Parameters (M)



$$FLOPs(\sum D_i, \sum W_i) \approx \text{ the target}$$
$$r_D = \frac{D_1 + D_2 + D_3}{D_1 + D_2 + D_3 + W_1 + W_2 + W_3}$$
$$= \frac{2D_3 + 2D_3 + D_3}{2D_3 + 2D_3 + D_3 + 2W_3 + 2.5W_3 + W_3} = 0$$

Comparison To State-of-the-Art

Model	#P	[#] F	CIFAR-10			CIFAR-100				
	(M)	(G)	Clean	PGD^{20}	CW^{40}	AutoAttack	Clean	PGD^{20}	CW^{40}	AutoAttack
WRN-28-10	36.5	5.20	$84.62_{\pm 0.06}$	$55.90_{\pm 0.21}$	$53.15_{\pm 0.33}$	$51.66_{\pm 0.29}$	$56.30_{\pm 0.28}$	$29.91_{\pm 0.40}$	$26.22_{\pm 0.23}$	$25.26_{\pm 0.06}$
RobNet-large-v2	33.3	5.10	$84.57_{\pm 0.16}$	$52.79_{\pm 0.08}$	$48.94_{\pm 0.13}$	$47.48_{\pm 0.04}$	$55.27_{\pm 0.02}$	$29.23_{\pm 0.15}$	$24.63_{\pm 0.11}$	$23.69_{\pm 0.19}$
AdvRush (7@96)	32.6	4.97	$84.95_{\pm 0.12}$	$56.99_{\pm 0.08}$	$53.27_{\pm 0.03}$	$52.90_{\pm 0.11}$	$56.40_{\pm 0.09}$	$30.40_{\pm 0.21}$	$26.16_{\pm 0.03}$	$25.27_{\pm 0.02}$
RACL (7@104)	32.5	4.93	$83.91_{\pm 0.32}$	$55.98_{\pm 0.15}$	$53.22_{\pm 0.08}$	$51.37_{\pm 0.11}$	$56.09_{\pm 0.08}$	$30.38_{\pm 0.03}$	$26.65_{\pm 0.02}$	$25.65_{\pm 0.10}$
RobustResNet-A1 (ours)	19.2	5.11	$\textbf{85.46}~(\textbf{\uparrow 0.5})$	$58.74~(\mathbf{\uparrow 1.8})$	$55.72~(\textbf{\uparrow 2.6})$	$54.42~(\textbf{\textbf{\uparrow 1.5}})$	59.34 († 2.9)	$\textbf{32.70}~(\textbf{\uparrow 2.3})$	$\textbf{27.76}~(\textbf{\uparrow 1.1})$	$26.75~(\uparrow 1.1)$
WRN-34-12	66.5	9.60	$84.93_{\pm 0.24}$	$56.01_{\pm 0.28}$	$53.53_{\pm 0.15}$	$51.97_{\pm 0.09}$	$56.08_{\pm 0.41}$	$29.87_{\pm 0.23}$	$26.51_{\pm 0.11}$	$25.47_{\pm 0.10}$
WRN-34-R	68.1	19.1	$85.80_{\pm 0.08}$	$57.35_{\pm 0.09}$	$54.77_{\pm 0.10}$	$53.23_{\pm 0.07}$	$58.78_{\pm 0.11}$	$31.17_{\pm 0.08}$	$27.33_{\pm 0.11}$	$26.31_{\pm 0.03}$
RobustResNet-A2 (ours)	39.0	10.8	$85.80~(\textbf{\uparrow 0.0})$	$59.72~(\textbf{\textbf{\uparrow 2.4}})$	$56.74~(\mathbf{\uparrow~2.0})$	$55.49~(\textbf{\uparrow 2.3})$	59.38 († 0.6)	$\textbf{33.0}~(\textbf{\textbf{\uparrow 1.8}})$	$28.71~(\textbf{\textbf{\uparrow 1.4}})$	$27.68~(\uparrow 1.4)$
WRN-46-14	128	18.6	$85.22_{\pm 0.15}$	$56.37_{\pm 0.18}$	$54.19_{\pm 0.11}$	$52.63_{\pm 0.18}$	$56.78_{\pm 0.47}$	$30.03_{\pm 0.07}$	$27.27_{\pm 0.05}$	$26.28_{\pm 0.03}$
RobustResNet-A3 (ours)	75.9	19.9	$\textbf{86.79}~(\textbf{\textbf{\uparrow 1.6}})$	$\textbf{60.10}~(\textbf{\textbf{\textbf{\textbf{7}}}}\textbf{\textbf{\textbf{3.7}}})$	$57.29~(\textbf{\textbf{\uparrow 3.1}})$	$55.84~(\textbf{\textbf{\textbf{3.2}}})$	$60.16~(\textbf{\textbf{\textbf{\textbf{7}3.4}}})$	$\textbf{33.59}~(\textbf{\textbf{\textbf{\textbf{3.6}}}})$	$29.58~(\textbf{\textbf{\uparrow 2.3}})$	$\textbf{28.48}~(\textbf{\textbf{\uparrow 2.2}})$
WRN-70-16	267	38.8	$85.51_{\pm 0.24}$	$56.78_{\pm 0.16}$	$54.52_{\pm 0.16}$	$52.80_{\pm 0.14}$	$56.93_{\pm 0.61}$	$29.76_{\pm 0.17}$	$27.20_{\pm 0.16}$	$26.12_{\pm 0.24}$
RobustResNet-A4 (ours)	147	39.4	87.10 († 1.6)	60.26 († 3.5)	57.9 († 3.4)	$56.29~(\mathbf{\uparrow~3.5})$	61.66 († 4.7)	$34.25~(\mathbf{\uparrow~4.5})$	30.04 († 2.8)	29.00 († 2.9)

Conclusions

- Architectural design significantly affects adversarial robustness.
- Residual block advancements for standard ERM training translate well to improve adversarial robustness under adversarial training.
- **RobustResNets** are proposed based on the observations from block and network levels.
- RobustResNets achieves better adversarial robustness while being more compact than state-of-the-art solutions.