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Conclusions

• Architectural design significantly affects adversarial robustness.
• Residual block advancements for standard ERM training translate well to improve adversarial robustness under adversarial training.

• RobustResNets are proposed based on the observations from block and network levels.
• RobustResNets achieves better adversarial robustness while being more compact than state-of-the-art solutions. 

• Existing work on adversarial defenses 
focuses on better adversarial training.

• Architectural components can impact 
adversarial robustness as much as 
different adversarial training methods.
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• Our final RobustResNets are based on RobustResBlock
(block level) and RobustScaling (network level).

• SoTA performance, ~1 % Autoattack improvement
over the second best.

• 2x more compact than others.

Network scaling level: depth (D1, D2, D3) and width (W1, W2,W3)

Block level: variants of residual blocks and their components, including convolution, 
activation, kernel size, normalization, etc.

Motivation

Motivation RobustScaling setting under the desired FLOP is obtained by solving:

(a) 5G FLOPs (b) 20G FLOPs

Compound Scaling by Depth and Width

Independent scaling rule: depth@D1 : D2 : D3 = 2 : 2 : 1 and width@W1 : W2 : W3 = 2 : 2.5 : 1.

Independent Scaling by Depth or Width

(a) Depth vs. Robustness (b) Top-ranked networks
(c) Depth vs. Robustness (d) Top-ranked networks
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Impact of Hierarchical Convolutions
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Scales

(a) Hierarchical convolution (b) Di = 5,Wi = 12 (c) Di = 7,Wi = 14 (d) Di = 11,Wi = 16
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(a) Aggregated convolution (b) Di = 5,Wi = 12 (c) Di = 7,Wi = 14 (d) Di = 11,Wi = 16

Impact of Aggregated Convolutions

Impact of Activation

(a) ReLU (b) SiLU (c) GELU (d) Softplus

Impact of Residual Topology

(a) Basic (b) Bottleneck (c) Inverted Bottleneck (d) Comparison among (a) – (c)

Comparison To State-of-the-Art
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